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 11 

Abstract 12 

 Recent advances in statistical methods for structural geology make it possible to treat 13 

nearly all types of structural geology field data. These methods provide a way to objectively test 14 

hypotheses and to quantify uncertainty, and their adoption into standard practice is important for 15 

future quantitative analysis in structural geology. We outline an approach for structural geologists 16 

seeking to incorporate statistics into their workflow using examples of statistical analyses from 17 

two locations within the western Idaho shear zone. In the West Mountain location, we test the 18 

published interpretation that there is a bend in the shear zone at the kilometer scale. Directional 19 

statistics on foliations corroborate this interpretation, while orientation statistics on foliation-20 

lineation pairs do not. This discrepancy leads us to reconsider an assumption made in the earlier 21 

work. In the Orofino location, we present results from a full statistical analysis of foliation-22 

lineation pairs, including data visualization, regressions, and inference. These results agree with 23 
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thermochronological evidence that suggests that the Orofino area comprises two distinct, 24 

subparallel shear zones. The R programming language scripts that were used for both statistical 25 

analyses can be downloaded to reproduce the statistical analyses of this paper. 26 

 27 

1. Introduction 28 

 Structural geologists routinely work with datasets that are logistically limited to small 29 

sample size and/or spatial extent. When working with such data, an important—but under-30 

appreciated—task should be to determine what can reasonably be interpreted about the geologic 31 

system in question. This determination depends on the uncertainty that arises because the dataset 32 

is an incomplete representation of the larger system. The field of statistics is fundamentally 33 

concerned with this data-to-system uncertainty, and statistical methods have important utility for 34 

any empirical research. As structural geologists, we can use statistics to better identify trends, 35 

understand mean(s) and dispersion in datasets, test hypotheses, evaluate implicit assumptions, and 36 

communicate the confidence of our interpretations to peers.  37 

 In most publications, structural geologists make interpretations using quantitative data (e.g. 38 

fabric measurements) and qualitative estimates of uncertainty. The lack of statistical treatment of 39 

structural geology data is in part a historical issue: there is not a strong tradition of training 40 

structural geologists in statistics. As a discipline born out of field studies and geologic mapping, 41 

early structural geology methods—including quantitative ones—developed without a statistical 42 

framework. Even with the eventual development of such a framework for directional (rays and 43 

lines) data types such as paleomagnetic poles, lineations, poles to foliation, paleocurrents, and fault 44 

striations (e.g. Davis and Sampson, 1986; Ducharme et al., 1985; Fisher et al., 1989; Jupp and 45 

Mardia, 1989; Merrett and Allmendinger, 1990; Yonkee and Weil, 2015), the statistically savvy 46 
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structural geologist is still unusual. Although contouring directional data has become 47 

commonplace as a result of computer programs such as Stereonet (version 10.0.0; Allmendinger, 48 

2017) and Orient (version 3.6.3; Vollmer, 2017), structural geologists do not generally make use 49 

of directional statistics to report statistical descriptors (mean, dispersion) or perform hypothesis 50 

tests in a statistically rigorous fashion.  51 

 Another reason structural geologists do not generally employ statistics is that many 52 

geologic data are not rays or lines, and thus cannot be treated with directional statistics. Until 53 

recently, there was no unified framework for the statistical treatment of orientation (line-within-54 

plane) data like foliation-lineation pairs, fault planes with slickenlines, axial planes with hinges, 55 

or focal mechanisms. Davis and Titus (2017) have developed the mathematical background and 56 

theory of orientation statistics in a manner accessible by structural geologists. Moreover, they 57 

developed a free R programming language library for both direction and orientation statistics, 58 

called geologyGeometry (download the latest version at: http://www.joshuadavis.us/software/). 59 

Tools in the library include advanced plotting, regression algorithms, and parametric and non-60 

parametric methods for inference, including hypothesis testing. The geologyGeometry library calls 61 

on other R libraries, including Directional (Tsagris and Athineou, 2016).  62 

 This contribution describes how to perform statistical analysis on structural geology data, 63 

and illustrates why incorporating statistics into a structural geology workflow is critical to the 64 

future of structural geology. Statistical analysis of two datasets from the western Idaho shear zone 65 

system, Idaho, USA are described in detail. The datasets were chosen because they address 66 

common questions in structural geology. A cursory geologic context is provided for each dataset 67 

(see Appendix 1 for additional details). The analysis of these two datasets reveals how thinking 68 

statistically leads to a more objective approach to interpretations and a quantified understanding 69 
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of the uncertainty surrounding these interpretations. By demonstrating both its methodology and 70 

utility, we hope to motivate the adoption of statistics into the standard structural geology workflow.  71 

All statistical analyses were done with the geologyGeometry R library, and the full analyses 72 

are shared in the appendices. Readers are encouraged to download the static version of the 73 

geologyGeometry library, which includes the datasets and statistical analyses from this 74 

contribution, at http://nicolasmroberts.github.io/scripts and run the scripts line-by-line. The scripts 75 

will output versions of all the data plots found in the figures, some of them interactive and 76 

rotatable. 77 

 78 

2. The statistical approach 79 

In the statistical analysis applied to each dataset in this paper, we utilize a new workflow 80 

motivated by both statistical protocol and geologic expertise. This workflow highlights two types 81 

of questions in statistics that are particularly relevant for structural geologists. First, are two 82 

datasets or subsets of a single dataset (e.g. two geographic domains) sampled from the same 83 

population? Second, are there real, systematic trends in the data, based on geographic position or 84 

any other variable?  85 

Figure 1 presents a diagram of this workflow. First, the structural geologist visualizes the 86 

data in a variety of plots and maps. As a result of visualization, the geologist makes hypotheses 87 

and qualitative interpretations about the geologic system under study (lower path in Fig. 1), from 88 

which possible conceptual models and predictions are developed. Simultaneously, a statistical 89 

protocol is executed that is necessary for any dataset (upper path). Model predictions may be 90 

objectively tested by regressions (grey arrows), in which case the upper and lower path overlap. If 91 

there are no systematic spatial tendencies in the data, then the data can be statistically described 92 



  Page 5 of 31 

by mean and dispersion, and inferences can be made about how well the population mean is known 93 

(the uncertainty of the population mean). The upper and lower paths interact again when model 94 

predictions are tested using statistical hypothesis testing. A statistical hypothesis test is formulated 95 

as a null hypothesis (e.g., “There is no difference in the mean of the populations from which dataset 96 

A and dataset B were sampled”) and an alternative hypothesis (e.g., “The means of the populations 97 

from which dataset A and dataset B were sampled do not have the same mean”). The null 98 

hypothesis is rejected or fails to be rejected based upon a credibility or confidence threshold, 99 

commonly 95%, or a p-value threshold, usually p < 0.05. A rejection of the null hypothesis leads 100 

a structural geologist to conclude that dataset A and dataset B are sampled from different 101 

populations. Importantly, the failure to reject the null hypothesis would not lead a structural 102 

geologist to conclude that dataset A and dataset B come from the same population—only that there 103 

is not strong evidence that they came from different populations.  104 

Interpretations about the geologic system all pass through the statistical portion of the 105 

workflow, but statistics are only useful insofar as they complement geologic expertise to develop 106 

statistically constrained conclusions about the geologic system. The first example in this paper 107 

focuses on the “Mean, dispersion”, “Inference about the mean”, and “Statistical hypothesis testing” 108 

boxes of the statistical workflow (Fig. 1) to statistically test a published geologic interpretation. 109 

The second example illustrates a path through the workflow (as shown by thick lines in Fig. 1).  110 

This statistical approach is compatible with a range of grouping parameters. We perform 111 

statistical tests on data grouped by geographic location, but these same methods can be performed 112 

on data grouped by relative age, composition, or any other parameter. 113 

 114 

2.1 Uncertainty in data collection 115 
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An important source of uncertainty comes from how structural geologists sample data. Data 116 

are often not homogeneously distributed over the field area because of the availability of outcrop, 117 

and often there are structural controls on where outcrops occur. Rigorous treatment of this spatial 118 

sampling problem is difficult and outside the scope of this paper. We use datasets that were 119 

collected in areas of mostly contiguous outcrop.  120 

Another source of uncertainty comes from the error of the devices and the measurement 121 

process. This topic is especially timely in the era of mobile devices (Allmendinger et al., 2017; 122 

Novakova and Pavlis, 2017). We assume that there is no systematic measurement error (bias), and 123 

we treat random measurement errors implicitly, together with other sources of variability in data. 124 

For example, suppose that we wish to characterize the average foliation in a field area, in which 125 

we have many foliation measurements, which vary by 20° or more. Perhaps 2° of this variation 126 

arises from the compass and the geologist user. Separating this source of variation from the much 127 

larger variation in the rocks complicates the analysis, probably with no appreciable effect on our 128 

confidence regions or conclusions. Multiple measurements per site can avoid this type of error, as 129 

the software of Allmendinger et al. (2017) does. That approach may particularly improve studies 130 

that would otherwise have very few data and is important for testing devices that may have 131 

systematic error associated with them, such as mobile devices. In this contribution, all data were 132 

collected with a traditional Brunton compass. Some sites have multiple measurements recorded, 133 

while only a single measurement was recorded at many sites.  134 

 135 

3. Background: direction and orientation data 136 

 The mathematical description of a geologic structure’s orientation depends on the type of 137 

geologic structure. A lineation can be described by two angles, a trend and plunge, or by a vector 138 
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in Cartesian (east, north, up) coordinates. A foliation can also be described by two angles—a strike 139 

and a dip—and similarly can be described as a single Cartesian vector that defines the pole to the 140 

foliation. Foliations and lineations are both examples of directional data, meaning that a single 141 

line or ray is sufficient to uniquely describe the geometry. A wealth of statistical techniques have 142 

been developed for directional data (e.g. Mardia and Jupp, 2000), termed directional statistics. 143 

In contrast, a foliation-lineation pair is defined by a line oriented within a plane. At a 144 

minimum, three angles are required to describe a unique foliation-lineation: a strike, a dip, and a 145 

rake. Foliation-lineation pairs are an example of orientation data and are treatable by orientation 146 

statistics (Downs, 1972; Davis and Titus, 2017). For statistical treatment, orientation data can be 147 

represented by a 3 by 3 rotation matrix, with the first row comprising the Cartesian vector of the 148 

pole to foliation, the second row comprising the vector of the lineation, and the third row 149 

comprising the vector that is orthogonal to the first two rows (Davis and Titus, 2017).  150 

   151 

4. Application 1: The western Idaho shear zone near West Mountain, ID 152 

The western Idaho shear zone forms a steep and abrupt north-south boundary between 153 

accreted terranes and the cratonic edge of the North American Cordillera (Armstrong et al., 1977; 154 

Fleck and Criss, 1985; Manduca et al., 1992; Tikoff et al., 2001; Fleck and Criss, 2004; Braudy et 155 

al., 2017). The ~5 kilometer wide shear zone is characterized by highly deformed orthogneisses. 156 

In the West Mountain area, the western Idaho shear zone is dextral, but sub-vertical lineations 157 

suggest transpression (Giorgis et al., 2008; Giorgis et al., 2016). The shear zone system bends at 158 

the 100-km scale to follow the cratonic boundary as defined by the 87Sr/86Sr isopleth (Figure 2A 159 

inset). Miocene extension resulted in a (~10°) east-west tilt, so that originally vertical foliation 160 

now dips at approximately 80° (Tikoff et al., 2001).  161 
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A recent structural study suggests that a subtle bend in shear zone orientation can also be 162 

detected at the kilometer scale near West Mountain, ID. Braudy et al. (2017) collected a dataset of 163 

field fabrics including both foliation-only measurements as well as foliation-lineation pairs (Fig. 164 

2B and 2C). They plot both types of fabric data in equal area nets and interpret a ~20° rotation 165 

between foliation strike in the North and South of the field area. In this section, we demonstrate a 166 

statistical analysis that is able to provide a more objective test of the interpretation of Braudy et al. 167 

(2017).  In addition, we test the assumption that the foliations from the foliation-only dataset and 168 

the foliation-lineation dataset are the same. Foliation-only and foliation-lineation pairs are treated 169 

separately because they are different data types. 170 

 171 

4.1 Directional statistics on foliation-only data 172 

 Foliation-only data comprise 148 field fabric measurements. Braudy et al. (2017) divide 173 

these data into three geographic domains: northern (n = 56), central (n = 23), and southern (n = 174 

69) (Fig. 2B). For the sake of comparison, these domain divisions are used in this statistical 175 

analysis.  176 

 For each domain, the data are used to make an inference about the population mean. This 177 

calculation is done by bootstrapping (Efron and Tibshirani, 1994) and by applying three two-178 

sample tests for comparison. Bootstrapping is repeated sampling with replacement. The 179 

implementation of the bootstrapping routine in the geologyGeometry R library is straightforward 180 

to use and automatically computes confidence regions (see Appendix 2 for a simplified 181 

description, or Davis and Titus (2017) for a full description). The result of bootstrapping is a cloud 182 

of means, whose center approximates the mean of the dataset and whose density at any given point 183 
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is related to the likelihood of that point being the population mean. The 95% confidence ellipse of 184 

each domain is calculated using the Mahalonobis distance (Mahalanobis, 1936). 185 

 To determine whether the foliations in each domain come from different populations, a 186 

series of statistical tests are devised. The null hypotheses are that the population mean of one 187 

domain (e.g. northern) is the population mean of another domain (e.g. southern). The null 188 

hypothesis is rejected if the 95% confidence regions of the two domains in question do not overlap. 189 

 Results of bootstrapping and 95% confidence region calculations are summarized in Figure 190 

3A. The 95% confidence ellipses of the southern and central domains overlap, but neither of these 191 

domains overlap with the northern region. We fail to reject the null hypothesis that the southern 192 

and central domains are sampled from the same population. For both comparisons with the 193 

northern domain, we reject the null hypothesis of a single population at 95% confidence.  194 

 In addition to bootstrapping, three types of two-sample tests were applied to each pair of 195 

domains. See Appendix 2 for a brief description of each test. A Wellner test (Wellner, 1979) yields 196 

a p < 0.0001 based on 10,000 permutations for the northern and southern domains as well as for 197 

the northern and central domains. The p-value for the southern and central comparison is 0.427. 198 

Two variations of Watson inference tests were performed on the data (Mardia and Jupp, 2000), 199 

one that assumes tightly concentrated data and the other that assumes large sample size. 200 

Respectively, these tests yield p-values of 0.000001 and 0 (northern and southern domains), 201 

0.00002 and 0.000005 (northern and central domains), and 0.233 and 0.131 (central and southern 202 

domains). These p-values agree well with the bootstrapping results, although some caution is 203 

advised, since these tests make assumptions about how the data are distributed. Taken together, 204 

these tests provide strong evidence against the null hypotheses that the northern domain and the 205 

central/southern domains are sampled from the same population. 206 
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 Given the statistically significant difference between the northern domain and the other 207 

two domains, we calculate the rotational difference between the northern and southern domains. 208 

The axis and magnitude of rotation between the northern and southern domains is determined by 209 

computing the minimum rotations between 10,000 pairs of northern and southern bootstrap means. 210 

Results from this analysis are summarized in Figure 3A. The mean rotation is 12.20° ± 3.8° (2𝜎) 211 

with a mean rotation axis that trends 164.3° and plunges 68.8° (see Figure 3 for the 95% confidence 212 

ellipse). These results contrast with the interpretation of Braudy et al. (2017), who suggest a ~20° 213 

rotation and implicitly assume a vertical axis rotation.  214 

 215 

4.2 Orientation statistics on foliation-lineation data 216 

 Foliation-lineation data comprise 129 field fabric measurements. The data are analyzed 217 

with the same geographic domains described above: northern (n = 16), central (n = 34), and 218 

southern (n = 79).  219 

 For each domain, both a bootstrapping method and a Markov chain Monte Carlo (MCMC) 220 

simulation (Davis and Titus, 2017) produce clouds of possible means from which a confidence 221 

region (for bootstrapping) or a credible region (for MCMC) can be computed. See Appendix 2 for 222 

a brief description. In general, for small sample sizes (n < 30), MCMC returns credible regions 223 

with accurate size, but the regions tend to be unrealistically isotropic. By contrast, bootstrapping 224 

returns more realistic anisotropic confidence regions, but the size of the region is consistently 225 

underestimated. Because of these complementary strengths and weaknesses, it is helpful to use 226 

both approaches.  227 
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 The null hypotheses for foliation-lineation pairs are identical to those for foliations 228 

described previously. If the bootstrap/MCMC confidence/credible regions do not overlap, then the 229 

null hypothesis can be rejected at 95% confidence/credibility. 230 

 Figure 3B shows the results of both bootstrapping and MCMC. The null hypothesis that 231 

the northern and central domains are sampled from populations with the same mean cannot be 232 

rejected using MCMC, but can be rejected using bootstrapping at 95% confidence. The same is 233 

true for the null hypothesis with respect to the northern and southern domains. The null hypothesis 234 

that the southern and central domains are sampled from populations with the same mean cannot 235 

be rejected at 95% confidence/credibility. Because MCMC credible regions  tend to have more 236 

accurate coverage rates than confidence regions produced from bootstrapping (see the numerical 237 

experiments of Davis and Titus, 2017) for small sample sizes, these analyses do not provide strong 238 

evidence that differences among the three domains are statistically significant. There is, however, 239 

weak evidence that the null hypothesis can be rejected for the northern domain with respect to the 240 

other two domains. 241 

   242 

4.3 Comparing foliation-only and foliation-lineation data 243 

 The statistical analysis of foliation-only and foliation-lineation fabric data from Braudy et 244 

al. (2017) leads to two different interpretations. From the foliation-only data, a 12.55° ± 3.30° (2𝜎) 245 

rotation between the southern/central and northern domains is inferred. From the foliation-246 

lineation data, no such difference can be inferred with statistical significance. This discrepancy 247 

motivates a statistical comparison of these two datasets. 248 

 In a final comparison, only the foliations are used from the foliation-lineation data, so that 249 

directional statistics can be applied to both datasets. The null hypothesis for each domain is that 250 
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the foliations from the foliation-lineation dataset are sampled from the same population as those 251 

from the foliation-only dataset. A comparison of the bootstrapped mean cloud for each domain 252 

(Fig. 3C) shows that the null hypothesis can be rejected with 95% confidence for the central and 253 

southern domains, but is not clearly rejected for the northern domain. This result is unexpected 254 

because foliation-only data and foliation-lineation data were collected in the same field area 255 

(similar extent and spacing) and were assumed to be sampled from the same population of fabric 256 

orientation (Fig. 2A). 257 

 258 

4.4 Summary 259 

 The statistical analysis of foliation-only and foliation-lineation data in the West Mountain 260 

area of the western Idaho shear zone allows for interpretations with quantitative evaluation of 261 

uncertainty. In addition, statistical comparison between foliation-only and foliation-lineation data 262 

reveals that a basic assumption about the two datasets—that the foliation and foliation-lineation 263 

datasets are being sampled from the same population—may not be valid. 264 

 The interpretation that Braudy et al. (2017) make with respect to foliation-only differences 265 

between the southern/central and northern domains is reasonable. Our statistical analysis agrees 266 

that a rotation has occurred, with high confidence. However, it is not clear that the rotation axis 267 

was vertical, as Braudy et al. (2017) implicitly assume, especially because Miocene tilting post-268 

dated the formation of any bend in the western Idaho shear zone. Our analysis explores the 269 

alternative assumption that the rotation was the smallest possible. Under this assumption, the 270 

confidence region for the rotation axis plunges steeply to the south and does not contain the vertical 271 

axis. The magnitude of rotation is smaller than was found by Braudy et al. (2017). In this way, 272 
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statistics helps us to explicitly identify assumptions and investigate how those assumptions affect 273 

geologic interpretations.  274 

 In contrast to the foliation-only data, statistical analysis of foliation-lineation pairs does not 275 

corroborate the counterclockwise rotation of fabric from south to north proposed by Braudy et al. 276 

(2017). The difference in fabric orientation among the domains is not statistically significant. 277 

 Braudy et al. (2017) do not interpret foliation-lineation pairs independently of the foliation-278 

only data. By combining the datasets, they assume that foliations from the two datasets were 279 

sampled from the same population within each domain. Three statistical comparisons of the 280 

foliation data from the two datasets within each domain reject this assumption with 95% 281 

confidence for the central and southern domains. All three domains of the foliation-lineation 282 

foliations plot in the gap between the northern and southern domains of the foliation-only foliations 283 

(Fig. 3C). There are several possible explanations for this discrepancy which motivate future work. 284 

One possibility is that SL-tectonites may be differently oriented than S-tectonites because of strain 285 

partitioning within the western Idaho shear zone, so that two distinct populations of fabrics are 286 

inter-layered over the same field extent. Another possibility is that rocks that have only foliations 287 

also have a more poorly developed fabric than rocks with obvious lineations, which may account 288 

for the larger spread of data. Whatever the case, new scientific questions arise from the statistical 289 

analysis that would not have been asked in the absence of the application of statistical methods. 290 

 291 

5. Application 2: Ahsahka and Woodrat Mountain shear zones near Orofino, ID 292 

 The Ahsahka shear zone (Figure 4) is in structural continuity with the western Idaho shear 293 

zone, about 200 km north of the West Mountain area (Giorgis et al., 2017; Schmidt et al., 2017). 294 

The Ahsahka shear zone occurs within a 90° bend of the western Idaho shear zone system (Figure 295 
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4 inset) (e.g., Lewis et al., 2014). The current interpretation is that there is an older, parallel 296 

Woodrat Mountain shear zone in cryptic contact with the northeast boundary of the Ahsahka shear 297 

zone (Lewis et al., 2014, Schmidt et al., 2017). They may also be younger shear zones present 298 

regionally (McClelland and Oldow, 2004, 2007; Lund et al., 2007). For the purposes of this 299 

statistical analysis, we group the deformed rocks north of the mapped boundary of the Ahsahka 300 

shear zone (Fig. 4) as Woodrat Mountain shear zone.  301 

A recent dataset collected by Stetson-Lee (2015) comprises foliation-lineation 302 

measurements from areas on either side of the cryptic boundary between what is currently mapped 303 

as the Ahsahka and Woodrat Mountain shear zones near Orofino, Idaho (Fig. 4). There is a 304 

generally NW-striking foliation throughout the field area. Cooling 40Ar/39Ar ages on hornblende, 305 

biotite, and muscovite suggest that rocks on either side of the inferred boundary between the 306 

Ahsahka and Woodrat Mountain shear zones have a protracted thermal history, and record at least 307 

two distinct events (Davidson, 1990). 308 

 The goal of this statistical analysis is to assess whether structural data support the current 309 

interpretation of two distinct shear zones. If geographic domains have statistically significant 310 

orientation differences, are these differences consistent with the current inferred boundary? This 311 

statistical analysis illustrates the proposed structural geology workflow (Fig. 1), with a particular 312 

emphasis on the “statistical protocol” path. First, the data are visualized through a variety of plots. 313 

Second, the data are tested for geographic trends using regressions, and are split into geographic 314 

domains as a result. Third, the domains are statistically described with mean and dispersion. 315 

Finally, the domains are compared using hypothesis testing. The statistical tests are motivated and 316 

informed by data from the literature (maps, cooling ages) and the conceptual model for shear zone 317 

boundary that arises from them.  318 
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 319 

5.1 Statistical analysis using orientation statistics 320 

The Orofino dataset comprises 69 foliation-lineation pairs in three geographic areas:  321 

Domain 1 (n = 23), domain 2 (n = 14), and domain 3 (n = 32) (Fig. 5). The division of the data in 322 

this way is consistent with current interpretations of geologic boundaries and will be statistically 323 

tested.   324 

Initial plots contain all the data, not yet divided into geographic domains (Fig. 5A). Equal-325 

area projections and equal-volume plots with Kamb contours show that the foliation-lineation data 326 

have an approximately unimodal distribution in their orientation. However, coloring the data by 327 

geographic location reveals a non-random relationship between orientation and geography. For 328 

example, when the data are color-coded by northing, there are clear domains of yellows and reds 329 

(Fig. 5A). In map view, this geographic dependence is apparent; lineations in the south trend north-330 

northwest, while in the north they trend east-northeast.  331 

  Before splitting the data into domains, it is critical to know whether this geographic 332 

dependency is systematic (i.e. can be described by a continuous function) or whether there are 333 

discrete differences of orientation in different geographic domains. A series of 18 geodesic 334 

regressions help answer this question (Fig. 5b). Each of these regressions fits a geodesic curve to 335 

the data as a function of an azimuth (e.g. northing). The maximum R2 of a geodesic regression is 336 

0.13 (for an azimuth of 30°). A kernel regression, which fits a more complex function to the data, 337 

of 30° azimuth has an R2 value of 0.522.  338 

These low R2 values suggest that the geographic dependency observed in the equal area 339 

and equal volume plots is probably not systematic, and leads to the division of the data into 340 
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multiple domains (Fig. 5C). The same plotting and regression analysis for each domain suggests 341 

that there is no strong geographic dependence. 342 

 Within each domain, the data are approximately unimodal and symmetric about that mode, 343 

so the mean is an appropriate summary statistic. We use the Fréchet mean, which is the point that 344 

minimizes the Fréchet variance (Table 1). The dispersion of the data can be described using the 345 

matrix Fisher maximum likelihood estimation. This dispersion measure is not meaningful 346 

geologically, but is critical to selecting which inference method is most appropriate (Davis and 347 

Titus, 2017). In this case, MCMC simulation is the best behaved method. As a check, 348 

bootstrapping has also been done.  349 

MCMC and bootstrapping results for each domain are shown in Fig. 5D and 5E, with 95% 350 

credible/confidence ellipsoids. The null hypotheses are that each pair of domains are sampled from 351 

populations with the same mean. The credible/confidence regions of domain 2 and 3 overlap 352 

appreciably, while the credible/confidence region of domain 1 does not overlap with the other two. 353 

The null hypothesis that domains 2 and 3 are sampled from populations with the same mean cannot 354 

be rejected. The null hypothesis that domain 1 and domain 3 are sampled from populations with 355 

the same mean can be rejected with 95% credibility/confidence. The null hypothesis for domains 356 

1 and 2 can also be rejected with 95% credibility/confidence.  357 

 358 

5.2 Summary  359 

 There are two first-order conclusions that can be drawn from the statistical analysis of the 360 

foliation-lineation pairs near Orofino, ID. First, there are geographic domains; within each domain 361 

the data are roughly unimodal and symmetric, and apparent spatial dependencies have consistently 362 

low R2 values. Second, hypothesis testing using bootstrapping and MCMC show that while the 363 
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difference between orientations of domains 2 and 3 is not statistically significant, domain 1 is 364 

significantly different from the other two domains.  365 

 These results are consistent with the mapped boundary between the Ahsahka and Woodrat 366 

Mountain shear zones as defined by cooling ages. Domains 2 and 3 are along strike of one another, 367 

and have been previously interpreted to be part of the Woodrat Mountain shear zone. Domain 1, 368 

which is across strike from the other two domains, has been interpreted to be part of the later 369 

Ahsahka shear zone. The presence of distinct orientations, confirmed to be statistically significant 370 

in this analysis, in rocks with different 40Ar/39Ar cooling ages provides further evidence that there 371 

were two distinct shear zones, now located adjacent to one another.  372 

 373 

6. Discussion 374 

In both the West Mountain and Orofino datasets, a workflow that incorporates statistical 375 

analysis leads to interpretations that are tested in an objective way with reported uncertainty—376 

some of which would likely not have been made otherwise. At West Mountain, we show that 377 

foliation-lineation pairs are not statistically distinguishable in different geographic areas, and that 378 

foliations in the foliation-only dataset are demonstrably different from foliations in the foliation-379 

lineation dataset. In addition, we computed the magnitude of rotation between the northern and 380 

southern domains in a way that incorporates the uncertainty about the mean of each domain. In the 381 

Orofino area, we show that the difference in orientation on opposite ends of the Dworshak 382 

Reservoir could not be accounted for by systematic spatial variations and that the difference in 383 

orientation between the southwest shore of the reservoir (domain 1) and the northeast shore 384 

(domains 2 and 3) is statistically significant. This division is consistent with other geologic data.  385 
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The statistical approach has tangible scientific benefits for structural geology data. 386 

Statistical methods help to quantitatively identify spatial tendencies in high-dimensional data. 387 

They also can be used to quickly compute basic statistical descriptors of the dataset and uncertainty 388 

about the population mean, which helps guide the visualization of data. The uncertainty of the 389 

population mean is used to reject (or fail to reject) geologic hypotheses posed as statistical 390 

hypotheses. Using this approach to testing hypotheses, geologic interpretations come with 391 

quantifiable uncertainties which structural geologists can report in publications. The statistical 392 

approach also allows structural geologists to assess the validity of implicit assumptions using the 393 

same methods that are used to test geologic hypotheses.  394 

 395 

6.1 Identifying spatial tendencies  396 

 In our regressions of foliation-lineation data, we treat each data point holistically as a 397 

rotation matrix. This approach is an improvement on standard practice in structural geology. The 398 

investigation of geographic trends in structural geology data usually involves the decomposition 399 

of high-dimensional data such as foliation-lineation pairs into one-dimensional elements. For 400 

example, it is common to plot the strike of foliation against the distance from a shear zone, even 401 

though each data point is a strike, dip, and rake. These two-dimensional charts have some utility 402 

but provide an incomplete view of each data point. For example, the lineation is not independent 403 

of the foliation. Best-fit lines and associated R2 values in these charts are problematic because such 404 

regressions should be informed by the other dimensions that comprise each data point. This partial 405 

view of the data can lead to false correlations or can fail to reveal correlations entirely. By treating 406 

the data holistically during statistical analysis, structural geologists can be more accurate in their 407 

identification of spatial dependencies. 408 
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 Performing regressions is also a critical step when testing that the data are spatially 409 

independent. Common techniques for inference about the mean of a population assume this 410 

independence. An iterative process of visual inspection (plotting), regression analysis, and division 411 

of the data into domains (as performed in the Orofino example) ensures that this assumption is 412 

reasonable.  413 

 414 

6.2 Uncertainty about the mean  415 

 Structural geology datasets are often relatively small and dispersed. This characterization 416 

is especially true for field datasets such as the ones described in this paper. Equal-area projection 417 

computer programs widely used by structural geologists have built-in measures of mean and 418 

dispersion for directional data (e.g. foliations only), but do not yet treat orientation data (e.g. 419 

foliation-lineation pairs). For foliation-lineation data, we employ one of two equally valid 420 

conceptions of the mean (Davis and Titus, 2017). To quantify how well the mean of the dataset 421 

reflects the mean of the population from which the dataset was sampled, bootstrapping and MCMC 422 

simulations produce clouds of means from which confidence and credibility regions can be 423 

inferred. The confidence/credible region for the mean of a structural geology dataset has two main 424 

functions. First, it contextualizes the mean of the dataset—a mean is not particularly useful if the 425 

uncertainty about that mean is very large. Second, confidence/credible regions enable comparison 426 

with other datasets using hypothesis testing. 427 

 428 

6.3 Hypothesis testing 429 

 In both examples provided in this paper, an experienced structural geologist would most 430 

likely notice differences among some of the domains. Taking a statistical approach, structural 431 
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geologists can test hypothesized differences in an objective way. In practice, if the 95% 432 

confidence/credible regions of two domains do not overlap, the null hypothesis that they are 433 

sampled from the same population can be rejected. 434 

 Statistical significance is especially important when the difference between two datasets is 435 

small or data are dispersed. In the West Mountain example, foliations associated with foliation-436 

only measurements plot in the same general area of the equal area projection as foliations 437 

associated with foliation-lineation measurements. While visual inspection may lead a structural 438 

geologist to suspect a difference between the two datasets, it is only through statistical hypothesis 439 

testing that the geologist can say that this difference is not due to random variation within the same 440 

population, at 95% confidence. We are able to rely on this interpretation to ask further questions—441 

such as why foliation-lineation pairs are different from foliation-only data—precisely because we 442 

have rejected the null hypothesis that they come from the same population.  443 

 444 

6.4 Using hypothesis testing and regressions to assess assumptions 445 

 A statistical comparison of the two West Mountain datasets leads to the conclusion that 446 

foliations from foliation-only data were likely not sampled from the same population as those from 447 

foliation-lineation data. This finding leads us to reject an assumption that Braudy et al. (2017) 448 

made that seemed logical. The ability to quickly assess such assumptions is a key advantage of the 449 

statistical workflow. In part, this advantage comes from a shift in perspective, because the 450 

statistical approach forces the articulation (and thus awareness) of the assumptions we make when 451 

analyzing data.  452 

  453 

6.5 Better science through statistics 454 



  Page 21 of 31 

 The use of statistics in structural geology may seem onerous, simply another task to 455 

complete prior to submitting a manuscript. However, given the examples above we suggest that 456 

there are many reasons to adopt this methodology throughout the data analysis and interpretation 457 

process. Taken together, the benefits of the statistical approach make it easier to have the scientific 458 

integrity Feynman (1974) discussed in his famous essay “Cargo Cult Science”: 459 

 460 

The first principle is that you must not fool yourself—and you are the easiest person to 461 

fool. So you have to be very careful about that. After you've not fooled yourself, it's easy 462 

not to fool other scientists. You just have to be honest in a conventional way after that.  463 

 464 

When conducting fieldwork, many of the hypotheses that we initially formulate are ultimately 465 

incorrect. The successful execution of science is the ability to generate and discard hypotheses 466 

with relative efficiency. Statistical analysis aids in perhaps the most difficult part of the scientific 467 

process: exactly when to discard a hypothesis. Statistical analysis is used by most scientific 468 

communities—including field scientists such as ecologists—to facilitate this process. The 469 

relatively small size and large dispersion common to structural geology datasets may seem a good 470 

excuse not to use statistics. In fact, these characteristics are particularly compelling reasons to 471 

incorporate statistical tools into the structural geology workflow.  It can be tempting to over-472 

interpret small datasets, and statistics provides a check on what interpretations are permissible 473 

given the small sample size.  474 

Finally, the process of science depends on the presentation of data and interpretations to 475 

scientific peers. Most data in structural geology papers present data in the form of lower 476 

hemisphere projections (e.g. equal area) or other representative documentation, neither of which 477 
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allows other structural geologists to evaluate or use the dataset effectively. A clear statement of 478 

the tested hypotheses and the results would be a useful way to communicate the uncertainty of the 479 

data with respect to a specific model. The theory for the types of data that we collect has been 480 

addressed by Davis and Titus (2017) and the tools to statistically analyze data are now available. 481 

With the addition of specific use cases—as introduced in this contribution—we hope that both the 482 

methodology and its utility will be clear and accessible to the structural geology community. 483 

 484 

Conclusion 485 

 Structural geology, especially structural geology in the field, is a science that benefits from 486 

the incorporation of statistical procedures. Field datasets are commonly small, geographically 487 

dispersed, and limited to small areas of good outcrop. Further, structural geology data are 488 

inherently high-dimensional, meaning that traditional ways of viewing data provide incomplete 489 

pictures of the data. The analysis of structural geology data within a statistical framework provides 490 

a way for structural geologists to more quantitatively understand and interrogate their data. 491 

 In this contribution, two typical structural geology field datasets were analyzed using 492 

direction and orientation statistics. In both cases, we employed a workflow in which geologic 493 

expertise interacts with statistical protocol to motivate geologically relevant statistical tests (Fig. 494 

1). In this framework, statistics connects the collected dataset to the geologic system through 495 

quantitative measures of uncertainty. We find significant utility in adopting such a workflow, 496 

particularly for datasets that are small and dispersed. Utilizing a statistical approach allowed us to 497 

interpret subtle differences in domains as real through hypothesis testing.  498 

 Statistical tools are critical to the future of structural geology. As structural geology 499 

datasets become available in open source databases, these statistical tools will be increasingly 500 
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important. When combining datasets collected by different geologists over the same geographic 501 

extent, these tools provide a way to test whether combining datasets is permissible. When 502 

examining the same type of geologic feature at thousands of field locations worldwide, these tools 503 

provide a way to quantitatively compare geometries.   504 

  505 

Acknowledgements 506 

This work was supported by funding from the National Science Foundation EAR 1639748 to B. 507 

Tikoff. N. Braudy generously provided the dataset from Braudy et al. (2017). Thank you to V. 508 

Chatzaras, N. Garibaldi, R. Williams, A. Jones, C. Bate and the rest of the Structure and Tectonics 509 

group at UW-Madison for insightful manuscript comments. We thank reviewers J. Loveless and 510 

A. Rotevatn for helpful comments.   511 

 512 

 513 

References 514 

Allmendinger, R. W. (2017), Stereonet 10.0.0 [Computer software]. Retrieved from  515 

http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet.html 516 

Allmendinger, R. W., Siron, C. R., & Scott, C. P. (2017). Structural data collection with mobile 517 

devices: Accuracy, redundancy, and best practices. Journal of Structural Geology, 102, 518 

98-112. https://doi.org/10.1016/j.jsg.2017.07.011 519 

Armstrong, R. L., W. H. Taubeneck, and P. O. Hales (1977), Rb-Sr and K-Ar geochronometry of 520 

Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and 521 

Idaho, Geological Society of America Bulletin, 88(3), 397–411. 522 

https://doi.org/10.1130/0016-7606(1977)88<397:RAKGOM>2.0.CO;2 523 



  Page 24 of 31 

Benford, B., J. Crowley, M. Schmitz, C. J. Northrup, and B. Tikoff (2010), Mesozoic 524 

magmatism and deformation in the northern Owyhee Mountains, Idaho: Implications for 525 

along-zone variations for the western Idaho shear zone, Lithosphere, 2(2), 93–118.  526 

https://doi.org/10.1130/L76.1 527 

Braudy, N., R. M. Gaschnig, D. Wilford, J. D. Vervoort, C. L. Nelson, C. Davidson, M. J. Kahn, 528 

and B. Tikoff (2017), Timing and deformation conditions of the western Idaho shear 529 

zone, West Mountain, west-central Idaho, Lithosphere, 9(2), 157–183. 530 

https://doi.org/10.1130/L519.1 531 

Davidson, G. F. (1990), Cretaceous tectonic history along the Salmon River suture zone near 532 

Orofino, Idaho: Metamorphic structural and 40Ar/39Ar thermochronologic constraints 533 

(M.Sc. thesis). Location: Oregon State University. 534 

Davis, J. C., and R. J. Sampson (1986), Statistics and data analysis in geology, Wiley New York.  535 

Davis, J. R., and S. J. Titus (2017), Modern methods of analysis for three-dimensional 536 

orientational data, Journal of Structural Geology, 96, 65–89. 537 

https://doi.org/10.1016/j.jsg.2017.01.002 538 

Downs, T. (1972), Orientation statistics. Biometrika, 59, 665-676. 539 

Ducharme, G. R. (1985), Bootstrap confidence cones for directional data, Biometrika, 72(3), 540 

637–645. https://doi.org/10.1093/biomet/72.3.637 541 

Efron, B., and R. J. Tibshirani (1994). An introduction to the bootstrap. CRC press.  542 

Feynman, R. P. (1974), Cargo cult science, Engineering and Science, 37(7), 10–13. 543 



  Page 25 of 31 

Fisher, N. I., and P. Hall (1989), Bootstrap confidence regions for directional data, Journal of the 544 

American Statistical Association, 84(408), 996–1002. 545 

https://doi.org/10.1080/01621459.1989.10478864   546 

Fleck, R. J., and R. E. Criss (1985), Strontium and oxygen isotopic variations in Mesozoic and 547 

Tertiary plutons of central Idaho, Contributions to Mineralogy and Petrology, 90(2–3), 548 

291–308. https://doi.org/10.1007/BF00378269 549 

Fleck, R. J., and R. E. Criss (2004), Location, age, and tectonic significance of the Western 550 

Idaho Suture Zone (WISZ). Report: USGS Numbered Series, 2004-1039, p. 48. 551 

Giorgis, S., W. McClelland, A. Fayon, B. S. Singer, and B. Tikoff (2008), Timing of 552 

deformation and exhumation in the western Idaho shear zone, McCall, Idaho, Geological 553 

Society of America Bulletin, 120(9–10), 1119–1133. https://doi.org/10.1130/B26291.1 554 

Giorgis, S., Z. D. Michels, L. Dair, N. Braudy, and B. Tikoff (2017), Kinematic and vorticity 555 

analyses of the western Idaho shear zone, USA, Lithosphere, 9(2), 223–234. 556 

https://doi.org/10.1130/L518.1 557 

Jupp, P. E., and K. V Mardia (1989), A unified view of the theory of directional statistics, 1975-558 

1988, International Statistical Review/Revue Internationale de Statistique, 57(3), 261–559 

294. https://doi.org/10.2307/1403799 560 

Lewis, R. S., J. H. Bush, R. F. Burmester, J. D. Kauffman, D. L. Garwood, P. E. Myers, and K. 561 

L. Othberg (2005). Geologic map of the Potlatch 30× 60 minute quadrangle, Idaho. Idaho 562 

Geological Survey Geological Map, 41. 563 

Lewis, R. S., P. K. Link, L. R. Stanford, and S. P. Long (2012). Geologic map of Idaho. Idaho 564 

Geological Survey Map, 9. 565 



  Page 26 of 31 

Lewis, R. S., K. L. Schmidt, R. M. Gaschnig, T. A. LaMaskin, K. Lund, K. D. Gray, B. Tikoff, 566 

T. Stetson-Lee, and N. Moore (2014), Hells Canyon to the Bitterroot front: A transect 567 

from the accretionary margin eastward across the Idaho batholith, Geological Society of 568 

America Field Guides, 37, 1–50.  569 

Mahalanobis, P. C. (1936), On the generalized distance in statistics, Proceedings of the National 570 

Institute of Sciences of India, 1936, 49–55. 571 

Manduca, C. A., L. T. Silver, and H. P. Taylor (1992), 87Sr/86Sr and 18O/16O isotopic systematics 572 

and geochemistry of granitoid plutons across a steeply-dipping boundary between 573 

contrasting lithospheric blocks in western Idaho, Contributions to Mineralogy and 574 

Petrology, 109(3), 355–372. https://doi.org/10.1007/BF00283324 575 

Manduca, C. A., M. A. Kuntz, and L. T. Silver, L. T. (1993). Emplacement and deformation 576 

history of the western margin of the Idaho batholith near McCall, Idaho: Influence of a 577 

major terrane boundary. Geological Society of America Bulletin, 105(6), 749-578 

765. https://doi.org/10.1130/0016-7606(1993)105%3C0749:EADHOT%3E2.3.CO;2 579 

Mardia, K. V, and P. E. Jupp (2000), Directional statistics, John Wiley & Sons. 580 

Marrett, R., and R. W. Allmendinger (1990), Kinematic analysis of fault-slip data, Journal of 581 

structural geology, 12(8), 973–986. https://doi.org/10.1016/0191-8141(90)90093-E 582 

McClelland, W. C., and J. S. Oldow (2004), Displacement transfer between thick-and thin-583 

skinned décollement systems in the central North American Cordillera, Geological 584 

Society, London, Special Publications, 227(1), 177–195. 585 

https://doi.org/10.1144/GSL.SP.2004.227.01.10 586 



  Page 27 of 31 

McClelland, W. C., and J. S. Oldow (2007). Late Cretaceous truncation of the western Idaho 587 

shear zone in the central North American Cordillera. Geology, 35(8), 723-588 

726. https://doi.org/10.1130/G23623A.1 589 

Michels, Z. D., S. C. Kruckenberg, J. R. Davis, and B. Tikoff (2015). Determining vorticity axes 590 

from grain-scale dispersion of crystallographic orientations. Geology, 43(9), 803-591 

806. https://doi.org/10.1130/G36868.1 592 

Novakova, L., and T. L. Pavlis (2017). Assessment of the precision of smart phones and tablets 593 

for measurement of planar orientations: A case study. Journal of Structural Geology, 97, 594 

93-103. https://doi.org/10.1016/j.jsg.2017.02.015 595 

Schmidt, K. L., R. S. Lewis, J. D. Vervoort, T. A. Stetson-Lee, Z. D. Michels, and B. Tikoff 596 

(2017), Tectonic evolution of the Syringa embayment in the central North American 597 

Cordilleran accretionary boundary, Lithosphere, 9(2), 184–204. 598 

https://doi.org/10.1130/L545.1 599 

Stetson-Lee, T. A. (2015), Using Kinematics and Orientational Statistics to Interpret 600 

Deformational Events: Separating the Ahsahka and Dent Shear Zones Near Orofino, ID 601 

(M.Sc. thesis). Location: University of Wisconsin--Madison.  602 

Strayer IV, L. M., D. W. Hyndman, J. W. Sears, and P. E. Myers (1989). Direction and shear 603 

sense during suturing of the Seven Devils-Wallowa terrane against North America in 604 

western Idaho. Geology, 17(11), 1025-1028. https://doi.org/10.1130/0091-605 

7613(1989)017%3C1025:DASSDS%3E2.3.CO;2 606 

 607 

Tikoff, B., P. Kelso, C. Manduca, M. J. Markley, and J. Gillaspy (2001). Lithospheric and crustal 608 

reactivation of an ancient plate boundary: The assembly and disassembly of the Salmon 609 



  Page 28 of 31 

River suture zone, Idaho, USA. Geological Society, London, Special 610 

Publications, 186(1), 213-231. https://doi.org/10.1144/GSL.SP.2001.186.01.13 611 

Tsagris, M., and G. Athineou (2016). Directional: Directional Statistics. R package version 612 

1.8. http://CRAN.R-project.org/package=Directional 613 

Vollmer, F. W. (2017), Software for the quantification, error analysis, and visualization of strain 614 

and fold geometry in undergraduate field and structural geology laboratory experiences, 615 

in Geological Society of America Abstracts with Programs, 49(2). 616 

https://doi.org/10.1130/abs/2017NE-291027 617 

Wellner, J. A. (1979), Permutation tests for directional data, The Annals of Statistics, 7(5), 929–618 

943. http://www.jstor.org/stable/2958664 619 

Yonkee, W. A., and A. B. Weil (2015), Tectonic evolution of the Sevier and Laramide belts 620 

within the North American Cordillera orogenic system, Earth-Science Reviews, 150, 621 

531–593. https://doi.org/10.1016/j.earscirev.2015.08.001 622 

 623 

Figure Captions 624 

Figure 1. Schematic diagram of a structural geology workflow that takes advantage of statistical 625 

tools to aid interpretations of the geologic system. The grey box surrounds the statistical 626 

component of the workflow and is a simplification of the statistical flowchart from Davis and 627 

Titus (2017). Grey arrows denote steps that involve regressions. Thicker arrows represent paths 628 

that are taken in the statistical analysis of the Orofino dataset in this paper. The structural 629 

geologist begins with an incomplete representation of the geologic system (the dataset). After 630 

visualizing the data, two simultaneous processes begin—the generation of geologic hypotheses 631 
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and predictive models as well as a statistical protocol that should be done on any dataset. 632 

Importantly, all interpretations of the geologic system run through the grey statistical box. 633 

 634 

Figure 2. Simplified geologic map and overview of data from the West Mountain, ID area of the 635 

Late Cretaceous western Idaho shear zone published in Braudy et al. (2017). A) Geologic units of 636 

the western Idaho shear zone (Red—Muir Creek orthogneiss, Purple—Sage Hen orthogneiss, 637 

Magenta—Payette River Tonalite) superimposed on a hill shade model of topography. The Muir 638 

Creek orthogneiss was the focus of the structural study in Braudy et al. (2017). Inset map shows 639 

the location of the field area on the Western Idaho Shear Zone (WISZ), shown by the red line. B) 640 

A cutout of the Muir Creek orthogneiss with hill shade model of topography, showing the 641 

geographic locations and symbols of foliation-lineation data (left) and foliation-only data (right). 642 

There are 148 foliation-only measurements and 129 foliation-lineation pairs. C) Equal area nets 643 

with data for foliation-only (left) and foliation-lineation datasets (middle). Also shown is an equal 644 

volume plot (right) (Davis and Titus, 2017), in which each line-plane pair is represented by a single 645 

point, and which shows four symmetric copies of the data. All plots are color-coded by the 646 

geographic domains used by Braudy et al. (2017) (Red—northern, Green—central, Blue—647 

southern). Map modified from Braudy et al. (2017). 648 

 649 

Figure 3. Summary of the statistical analyses for the West Mountain field fabrics dataset, the 650 

location for which is shown in Figure 2. A) An analysis of the claim from Braudy et al. (2017) 651 

that there is a 20° rotation between the northern and southern domains: Top, a lower hemisphere 652 

equal area projection (with zoomed-in cutout) with the 95% confidence regions for the mean of 653 

foliation-only data in each of the three domains (Red—northern, Green—central, Blue—654 
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southern) as determined from bootstrapping; Middle, a histogram of angular distances between 655 

bootstrap iterations of the northern and southern domains; Bottom, a lower hemisphere equal 656 

area net projection visualization of the rotation computed from the bootstrapped angular distance 657 

and corresponding rotation axes. B) A series of two-sample hypothesis tests plotted on equal 658 

volume plots (with zoomed-in cutouts). Both bootstrapping and 95% confidence ellipsoids as 659 

well as Markov chain Monte Carlo (MCMC) mean probability clouds and their 95% credible 660 

ellipsoids are used to compare each pair of domains (Black—northern, Orange—central, Blue—661 

southern). C) A comparison of 95% confidence ellipses from bootstrapping foliations. Foliations 662 

from foliation-lineation data are compared with those from foliation-only data within each 663 

domain: Colors are the same as in (A). 664 

 665 

Figure 4. Simplified geologic map of the Orofino area, with the foliation-lineation dataset 666 

superimposed. A cutout map of Idaho shows the location of the Orofino field area. The red line 667 

shows the location of that Ahsahka shear zone, interpreted as part of the western Idaho shear 668 

zone. Exposure of sheared Late Cretaceous basement below the Miocene Columbia River basalts 669 

is limited to the shoreline of Dworshak reservoir, where all foliation-lineation pairs were 670 

measured.  An interpretation of the boundary between the Woodrat Mountain and Ahsahka shear 671 

zones is shown. Modified from Lewis et al. (2005) and Lewis et al. (2012).  672 

 673 

Figure 5. Summary of statistical analysis for the Orofino, ID area foliation-lineation dataset. A) 674 

Two different plots of the foliation-lineation data colored by kilometers north in UTM: Left, an 675 

equal-area plot with lineations (squares) and foliation poles (circles), each with 2𝜎, 6𝜎, 10𝜎, 14𝜎, 676 

and 18𝜎 Kamb contours; Right, an equal volume plot after Davis and Titus (2017) with 677 
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translucent 2𝜎 Kamb contours. Each point in the equal volume plot is a foliation-lineation pair 678 

represented as a rotation from a reference plane-line pair. Note that there are four copies of the 679 

dataset due to four-fold symmetry of such data (See Davis and Titus (2017) for more 680 

information). B) A series of 18 geodesic regressions testing geographic variation along specific 681 

azimuths. Each solid dot is a regression with a corresponding p-value based on 100 permutations 682 

(open circle). C) The geologic map from Figure 4 superimposed with the domains used in this 683 

statistical analysis. D) A series of two-sample hypothesis tests plotted on equal volume plots 684 

(with zoomed-in cutouts). MCMC mean probability clouds and their 95% credible regions as 685 

well as bootstrapped mean clouds and their 95% confidence region are used to compare each pair 686 

of domains (Black—domain 1, Orange—domain 2, Blue—domain 3). E) A lower-hemisphere, 687 

equal-area projection showing the results of the MCMC analysis. It can be seen that both the 688 

foliation and lineation are different for Domain 1.  689 

 690 

Table 1. Two conceptions of the mean strike, dip, and rake for the three domains in the Ahsahka 691 

segment of the western Idaho shear zone. Strike/dip is in right hand rule.  692 

 693 


